1,568 research outputs found

    Sex-Specific Pre-Session PRS Difference between Bouts of Fatiguing Resistance Training

    Get PDF
    The perceived recovery status (PRS) scale, a valid psychophysiological tool, provides a scalar representation of varying levels of an individualized recovery status before or during various modes of exercise. Previous investigations recognize females as more fatigue resilient, quantified via the PRS scale, than males during repeated sprint performance. To the best of our knowledge, no investigations have examined the sex-specific PRS responses during multi-session resistance training. PURPOSE: The purpose of this study was to compare male and female PRS scores for multi-session fatiguing resistance training with incremental decline intersession recovery periods. METHODS: Subjects consisted of 14 trained males (n = 7) and females (n = 7) that participated in five resistance training sessions. Session 1 consisted of one repetition maximum (1RM) testing for barbell back squat (SQ) and barbell bench press (BP); additionally, during session 1, subjects were given standardized instructions explaining how to interpret the PRS scale (familiarization). PRS was collected prior to each training session. Seventy-two hours after session 1, participants completed a standardized dynamic warm up, followed by a comprehensive, fatiguing resistance training session that began with 3 sets of 55%, 65%, and 75% 1RM, followed by 1 set of as many repetitions as possible (AMRAP) at 85% 1RM for SQ. Ten minutes of recovery was provided upon completion of SQ, before completing the same 4 set routine for BP. Upon 5-minute rest, participants completed 4 set of 2 repetitions in reserve (RIR) for barbell reverse lunge, barbell shoulder press, and barbell bent-over row in circuit format with 90 seconds rest between circuits. In order, 72hrs, 48hrs, 24hrs, and 6hrs rest periods were assigned as intersession recovery. A 2 (sex) x 4 (session) mixed factorial ANOVA was used to determine the sex-specific responses to resistance training. RESULTS: No significant main effect was revealed between males and females PRS scores across sets. However, a statistically significant main effect of PRS scores was illustrated across sets [F (2.323, 27.875) =19.363, pCONCLUSION: These results suggest males and females globally recover similarly from fatigue induced resistance training. However, these data also suggest optimal intersession recovery duration may differ between the sexes – males reported significantly less recovered 48hr after training (between set 2 and 3), while female recovery decline after 48hr was an insignificant change; thus, aligning with previous reports of greater fatigue resilience appearing in females versus males

    A Cardiac MicroRNA Governs Systemic Energy Homeostasis by Regulation of MED13

    Get PDF
    SummaryObesity, type 2 diabetes, and heart failure are associated with aberrant cardiac metabolism. We show that the heart regulates systemic energy homeostasis via MED13, a subunit of the Mediator complex, which controls transcription by thyroid hormone and other nuclear hormone receptors. MED13, in turn, is negatively regulated by a heart-specific microRNA, miR-208a. Cardiac-specific overexpression of MED13 or pharmacologic inhibition of miR-208a in mice confers resistance to high-fat diet-induced obesity and improves systemic insulin sensitivity and glucose tolerance. Conversely, genetic deletion of MED13 specifically in cardiomyocytes enhances obesity in response to high-fat diet and exacerbates metabolic syndrome. The metabolic actions of MED13 result from increased energy expenditure and regulation of numerous genes involved in energy balance in the heart. These findings reveal a role of the heart in systemic metabolic control and point to MED13 and miR-208a as potential therapeutic targets for metabolic disorders.PaperCli

    A Device for Performing Lateral Conductance Measurements on Individual Double-Stranded DNA Molecules

    Get PDF
    A nanofluidic device is described that is capable of electrically monitoring the driven translocation of DNA molecules through a nanochannel. This is achieved by intersecting a long transport channel with a shorter orthogonal nanochannel. The ionic conductance of this transverse nanochannel is monitored while DNA is electrokinetically driven through the transport channel. When DNA passes the intersection, the transverse conductance is altered, resulting in a transient current response. In 1 M KCl solutions, this was found to be a current enhancement of 5–25%, relative to the baseline transverse ionic current. Two different device geometries were investigated. In one device, the DNA was detected after it was fully inserted into and translocating through the transport nanochannel. In the other device, the DNA was detected while it was in the process of entering the nanochannel. It was found that these two conditions are characterized by different transport dynamics. Simultaneous optical and electrical monitoring of DNA translocation confirmed that the transient events originated from DNA transport through the nanochannel intersection

    International Society of Sports Nutrition Position Stand:Probiotics

    Get PDF
    Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO). Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications. Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent. Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown. The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components. Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes’ exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections. Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes. Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise. The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product’s shelf life, as measured by colony forming units (CFU) or live cells. Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population

    The molecular portraits of breast tumors are conserved acress microarray platforms

    Get PDF
    Background Validation of a novel gene expression signature in independent data sets is a critical step in the development of a clinically useful test for cancer patient risk-stratification. However, validation is often unconvincing because the size of the test set is typically small. To overcome this problem we used publicly available breast cancer gene expression data sets and a novel approach to data fusion, in order to validate a new breast tumor intrinsic list. Results A 105-tumor training set containing 26 sample pairs was used to derive a new breast tumor intrinsic gene list. This intrinsic list contained 1300 genes and a proliferation signature that was not present in previous breast intrinsic gene sets. We tested this list as a survival predictor on a data set of 311 tumors compiled from three independent microarray studies that were fused into a single data set using Distance Weighted Discrimination. When the new intrinsic gene set was used to hierarchically cluster this combined test set, tumors were grouped into LumA, LumB, Basal-like, HER2+/ER-, and Normal Breast-like tumor subtypes that we demonstrated in previous datasets. These subtypes were associated with significant differences in Relapse-Free and Overall Survival. Multivariate Cox analysis of the combined test set showed that the intrinsic subtype classifications added significant prognostic information that was independent of standard clinical predictors. From the combined test set, we developed an objective and unchanging classifier based upon five intrinsic subtype mean expression profiles (i.e. centroids), which is designed for single sample predictions (SSP). The SSP approach was applied to two additional independent data sets and consistently predicted survival in both systemically treated and untreated patient groups. Conclusion This study validates the breast tumor intrinsic subtype classification as an objective means of tumor classification that should be translated into a clinical assay for further retrospective and prospective validation. In addition, our method of combining existing data sets can be used to robustly validate the potential clinical value of any new gene expression profile

    The molecular portraits of breast tumors are conserved across microarray platforms

    Get PDF
    BACKGROUND: Validation of a novel gene expression signature in independent data sets is a critical step in the development of a clinically useful test for cancer patient risk-stratification. However, validation is often unconvincing because the size of the test set is typically small. To overcome this problem we used publicly available breast cancer gene expression data sets and a novel approach to data fusion, in order to validate a new breast tumor intrinsic list. RESULTS: A 105-tumor training set containing 26 sample pairs was used to derive a new breast tumor intrinsic gene list. This intrinsic list contained 1300 genes and a proliferation signature that was not present in previous breast intrinsic gene sets. We tested this list as a survival predictor on a data set of 311 tumors compiled from three independent microarray studies that were fused into a single data set using Distance Weighted Discrimination. When the new intrinsic gene set was used to hierarchically cluster this combined test set, tumors were grouped into LumA, LumB, Basal-like, HER2+/ER-, and Normal Breast-like tumor subtypes that we demonstrated in previous datasets. These subtypes were associated with significant differences in Relapse-Free and Overall Survival. Multivariate Cox analysis of the combined test set showed that the intrinsic subtype classifications added significant prognostic information that was independent of standard clinical predictors. From the combined test set, we developed an objective and unchanging classifier based upon five intrinsic subtype mean expression profiles (i.e. centroids), which is designed for single sample predictions (SSP). The SSP approach was applied to two additional independent data sets and consistently predicted survival in both systemically treated and untreated patient groups. CONCLUSION: This study validates the "breast tumor intrinsic" subtype classification as an objective means of tumor classification that should be translated into a clinical assay for further retrospective and prospective validation. In addition, our method of combining existing data sets can be used to robustly validate the potential clinical value of any new gene expression profile

    Identification of Novel Therapeutic Targets in Microdissected Clear Cell Ovarian Cancers

    Get PDF
    Clear cell ovarian cancer is an epithelial ovarian cancer histotype that is less responsive to chemotherapy and carries poorer prognosis than serous and endometrioid histotypes. Despite this, patients with these tumors are treated in a similar fashion as all other ovarian cancers. Previous genomic analysis has suggested that clear cell cancers represent a unique tumor subtype. Here we generated the first whole genomic expression profiling using epithelial component of clear cell ovarian cancers and normal ovarian surface specimens isolated by laser capture microdissection. All the arrays were analyzed using BRB ArrayTools and PathwayStudio software to identify the signaling pathways. Identified pathways validated using serous, clear cell cancer cell lines and RNAi technology. In vivo validations carried out using an orthotopic mouse model and liposomal encapsulated siRNA. Patient-derived clear cell and serous ovarian tumors were grafted under the renal capsule of NOD-SCID mice to evaluate the therapeutic potential of the identified pathway. We identified major activated pathways in clear cells involving in hypoxic cell growth, angiogenesis, and glucose metabolism not seen in other histotypes. Knockdown of key genes in these pathways sensitized clear cell ovarian cancer cell lines to hypoxia/glucose deprivation. In vivo experiments using patient derived tumors demonstrate that clear cell tumors are exquisitely sensitive to antiangiogenesis therapy (i.e. sunitinib) compared with serous tumors. We generated a histotype specific, gene signature associated with clear cell ovarian cancer which identifies important activated pathways critical for their clinicopathologic characteristics. These results provide a rational basis for a radically different treatment for ovarian clear cell patients

    Genomic Hypomethylation in the Human Germline Associates with Selective Structural Mutability in the Human Genome

    Get PDF
    The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR) mediated by low-copy repeats (LCRs). Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ∼1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs) from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH) chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR–mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease
    • …
    corecore